

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Edge systems architecture
Course

Field of study

Computing

Area of study (specialization)
Edge Computing

Level of study
Second-cycle studies

Form of study

full-time

Year/Semester

1/1

Profile of study

general academic

Course offered in
Polish

Requirements

elective

 Number of hours

Lecture

30

Tutorials

Laboratory classes

30

Projects/seminars

Other (e.g. online)

Number of credit points

5

Lecturers

Responsible for the course/lecturer:

dr inż. Adam Turkot

email: adam.turkot@put.poznan.pl

tel. 61 6652284

Faculty of Automatic Control, Robotics and

Electrical Engineering

ul. Piotrowo 3a, 60-965 Poznań

Responsible for the course/lecturer:

 Prerequisites

A student starting this course should have basic knowledge of network protocols HTML, TCP, UDP, SSH,

ICMP, programming in C and C++, Bash command interpreter, Python and JavaScript. He/she should also

understand the necessity to extend his/her competences / be ready to cooperate within a team.

Moreover, in terms of social competences, a student must present such attitudes as honesty,

responsibility, perseverance, cognitive curiosity, creativity, personal culture, respect for other people.

2

Course objective

To familiarise students with the methodology of designing edge system architectures. To provide

students with extended knowledge in the scope of edge systems architectures and the hardware and

software solutions used in them. Developing skills of programming techniques that ensure: efficient use

of hardware resources of boundary systems. Optimal, for a given task, realisation of applications with

the use of an appropriate hardware platform, with support for dedicated peripheral modules and taking

into account the requirements related to energy saving and computational efficiency. Mastering the

communication techniques between the controller and digital and analogue elements of edge systems.

To introduce students to the possibilities and limitations of building edge systems based on controllers

and single board computers. To train students' abilities to work in a team by realizing project elements

and combining them into a whole

Course-related learning outcomes

Knowledge

1.Has advanced and deepened knowledge of broadly understood information systems, theoretical

foundations of their construction, and methods, tools and environments

2. Has well-ordered and theoretically grounded general knowledge connected with the key issues of

computer science

3. Knows advanced methods, techniques and tools applied in solving complex engineering tasks and

carrying out research work in the selected field of computer science.

Skills

1. Is able to acquire information from literature, databases and other sources (in Polish and English),

integrate it, interpret and critically evaluate it, draw conclusions and formulate and exhaustively justify

opinions.

2. Is able to use analytical, simulation and experimental methods to formulate and solve engineering

tasks and simple research problems

3. Is able to integrate knowledge from different fields of computer science (and if necessary from other

scientific disciplines) and apply a system approach, taking into account also non-technical aspects, when

formulating and solving engineering tasks

4. Is able to make a critical analysis of existing technical solutions and propose their improvements

(enhancements)

5. Is able to solve complex information technology tasks, including atypical tasks and tasks with a

research component, using new conceptual methods.

6. Is able to design a complex device, information system or process to a given specification taking into

account non-technical aspects and implement the design - at least in part - using appropriate methods,

techniques and tools including adapting existing tools or developing new ones.

Social competences

1. Understands that in computer science knowledge and skills become obsolete very quickly.

2. Understands the importance of using the latest knowledge in computer science to solve research and

practical problems.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

3

Formal evaluation:

(a) for lectures: on the basis of answers to questions concerning the material discussed in previous

lectures

(b) for laboratorys/exercises: based on an assessment of the current progress of the tasks,

Summary evaluation:

a) in the scope of lectures, the verification of the assumed educational results is carried out by: an oral

examination combined with the defence of the project, in case of doubt a written part (an electronic

test on the Moodle platform);

b) as far as laboratories are concerned, the verification of the assumed educational results is carried out

by: oral examination combined with the project defence: evaluation of the student's preparation for

individual sessions of laboratory classes by checking the preparation of given projects/exercises and

evaluation of skills related to the implementation of laboratory classes, continuous evaluation, during

each class (oral answers), rewarding the increase in the ability to use the learned principles and

methods, evaluation of documentation created systematically along with the progress of project work;

documentation prepared partly during the classes and partly after their completion; this evaluation also

includes the ability to work in a team, evaluation and defence by the student of the report on project

implementation,

Programme content

Fundamentals of edge systems architecture. Techniques for efficient use of hardware resources.

Evaluation of hardware capabilities. Programming environment. Techniques of programming. Methods

of code optimization. User interface. Hardware and software solutions for power management.

Software security techniques (program integrity, resistance against unauthorized copying) Controller

architectures. Local and shared resources, consequences of sharing resources. Buses in distributed

systems. Hardware and software techniques for increasing reliability of communication links.

Communication techniques and protocols used for communication with peripherals and between

controllers and in the cloud. Increasing the reliability of unmanned systems, techniques to ensure

energy management of autonomous systems.

Laboratory classes are conducted in the form of fifteen 2-hour exercises, held in the laboratory,

preceded by a 2-hour instruction session at the beginning of the semester. The exercises are carried out

by 2-person teams of students.

The labs include: Programming single board computer architectures. Programming of microcontroller

system architectures. Communication protocols in particular SPI, I2C, UART. IoT communication

protocols. Programming modular architectures on the example of Colibri iMX7.

Teaching methods

Teaching methods:

lecture: multimedia presentation, presentation illustrated with examples given on the board,

presentation of selected student solutions.

laboratory exercises: practical exercises, performing experiments, discussion, teamwork.

4

Bibliography

Basic

Linux w systemach embedded Bis, Marcin. Wydawnictwo btc, 2011

Building embedded Linux systems Yaghmour, Karim. O'Reilly, cop. 2003.

Additional

Wbudowane systemy mikroprocesorowe Timofiejew, Aleksander., Akademia Podlaska (Siedlce).

Wydawnictwo.Wydawnictwo Akademii Podlaskiej, 2010.

Breakdown of average student's workload

 Hours ECTS

Total workload 125 5,0

Classes requiring direct contact with the teacher 60 2,5

Student's own work (literature studies, preparation for
laboratory classes/tutorials, preparation for tests/exam, project
preparation) 1

65 2,5

1 delete or add other activities as appropriate

